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Abstract: The efficiency of catalytic cycles is measured by their turnover frequency (TOF). The degree of
TOF control determines which states contribute most to the rate of the cycle, and thus indicates the steps
that have the highest impact on the cycle. A kinetic model developed by Christiansen (Christiansen, J. A.
Adv. Catal. 1953, 5, 311) for catalytic cycles is implemented here in a form that utilizes state energies.
This enables one to assess the efficiency of quantum mechanically computed catalytic cycles like the
palladium-catalyzed cross-coupling and Heck reactions, to test alternative hypotheses, and to make some
predictions. This implementation can also account for effects such as Sabatier’s volcano curve for
heterogeneous catalysis. The model leads to a dependence of the TOF for any cycle on the “corrected”
energy span quantity, δE, whose precise expression depends on the location of the summit and trough of
the cycle in the step sequence of the cycle. Thus, knowing the highest energy transition state, the most
abundant reaction intermediate, and the reaction energy enables one to make quick predictions about
relative efficiency of cycles. At the same time, the degree of TOF control determines which states contribute
most to the rate of reaction, and thus indicates the values to be included in the calculation of the energetic
span and the steps that may be tinkered with to improve the cycle.

Introduction

Catalytic cycles (Scheme 1) are ubiquitous in chemistry and
biology; most enzymes operate by means of catalytic cycles,
and efficient catalysts are those that lead to a large turnover
frequency (TOF) of the cycle. How one can conceptualize an
efficient catalytic cycle is the main concern of the present
contribution that seeks to combine the insights of quantum
chemistry with a kinetic model that permits a detailed calculation
of relative efficiencies.

Modern quantum mechanical (QM) modeling of catalysts
provides us with detailed insight into the energy landscape of
a given catalytic cycle. The quantitative aspects of these studies
have been greatly improved in recent years, mostly due to the
advent of density functional theory (DFT) that allows generally
reliable computations to be made for catalytic processes.1-3 Even
enzymatic cycles for species with thousands of atoms can be

calculated today by use of the hybrid DFT/molecular mechanics
(DFT/MM) method.4 A useful addition to these sophisticated
treatments would be an integrating tool that can answer the key
question: How efficient is a giVen catalytic cycleVis-à-Vis an
alternatiVe one?Many QM treatments, as well as experimental
assessments of catalysts, tend to focus on the rate-determining
step of the cycle, i.e., the one possessing the highest transition
state (HETS), and try to find a catalyst that lowers the energy
of that specific transition state. However, this approach, while
very good for revealing trends under single turnover conditions,
misses an essential property of a catalyst, the TOF of its catalytic
cycle. The TOF of a cycle does not depend on the rate-
determining step or any other single factor; it is rather an

(1) For a tiny selection of papers focused on the perspectives of quantum studies
of catalysis, see: (a) Frenking G.; Fro¨hlich N. Chem. ReV. 2000, 100, 717-
774. (b) Cundari, T. R.; Deng, J.; Fu, W.; Klinckman, T. R.; Yoshikawa,
A. J. Chem. Inf. Comput. Sci.1998, 38, 941-948. (c) Neurock, M.J. Catal.
2003, 216, 73-88. (d) Gokhale, A. A.; Kandoi, S.; Greeley, J. P.;
Mavrikakis, M.; Dumesic, J. A.Chem. Eng. Sci.2004, 59, 4679-4691.
(e) Boudart, M.Catal. Lett.2000, 65, 1-3. (f) Greeley, J.; Mavrikakis, M.
Nat. Mater. 2004, 3, 810-815. (g) Sundermann, A.; Uzan, O.; Martin J.
M. L. Chem. Eur. J.2001, 7, 1703-1711 (h) Braga, A.; Morgon, N.;
Ujaque, G.; Maseras, F.J. Am. Chem. Soc. 2005, 127, 9298-9307. (i)
Senn, H. M.; Ziegler, T.Organometallics2004, 23, 2980. (j) Jacoby, M.
Chem. Eng. News2004, 82 (Nov 29), 25-28.

(2) Kozuch, S.; Jutand, A.; Amatore, C.; Shaik, S.Organometallics2005, 24,
2319-2330.

(3) Goossen, L. J.; Koley, D.; Hermann, H. L.; Thiel, W.J. Am. Chem. Soc.
2005, 127, 11102-11114.

(4) See, for example, the computed catalytic cycle of cytochrome P450: (a)
Loew, G. H.; Harris, D. L.Chem. ReV. 2000, 100, 407-420. (b) Shaik, S.;
Kumar, D.; de Visser, S. P.; Altun, A.; Thiel, W.Chem. ReV. 2005, 105,
2279-2328.

Scheme 1 . A Schematic Catalytic Cycle with an Energy Difference
of ∆G (the Reaction Energy of One Turnover)a

a The starting and final stages of the catalyst species (C0 and CN) are
essentially the same molecular state.
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integrated “rate function” of the entire cycle, the nano-machine
that carries the catalysis.

In this contribution, we develop a kinetic model that uses
computational QM data and enables one to answer key questions
associated with a catalytic cycle, such as the one presented in
Scheme 1. The kinetic model is based on the steady-state
approximation.5 For convenience, the expressions are based on
fixed standard concentrations of the noncatalyst species (reac-
tant, product, and cofactors), but this convenience can be waived
and the treatment can be modified to consider variable concen-
trations. The so-developed model is designed to attend QM
calculations to predict the TOF and its variation using the
normally calculated quantities, barriers, and relative energies
of intermediates, reactants, and products. The model is subse-
quently applied here to the various versions of the catalytic cycle
for the palladium-catalyzed cross-coupling and Heck reactions
studied previously by a few groups,2,3,6 as well as to Sabatier’s
volcano effect in heterogeneous catalysis7,8 and its connection
to the Brønsted coefficients and the Bell-Evans-Polanyi
principle.9

What Makes for a Good Catalytic Cycle? A brief back-
ground that provides insight into the question has been given
by Amatore and Jutand.10 Consider, in Figure 1, the velocity of
a catalytic process when steady-state kinetics is reached. In this
case, one can use the Eyring equation or the Arrhenius rate law
and express the rate (r) of the cycle approximately as in eq
1:

where Cj is the catalyst species of the rate-determining step and
Eaj is the corresponding activation energy. A rough estimate
of the concentration of Cj can be achieved considering the
respective Boltzmann distribution,

where [Ct] is the total concentration of catalyst species and∆Ej

is the energy of Cj with respect to the lowest-lying intermediate,
also known as the most abundant reaction intermediate

(MARI).11,12This leads to the following expressions for the rate,
r, and TOF of the cycle:

HereδE is called the energetic span of the cycle,10 which by
reference to Figure 1 is the difference between the highest and
the lowest points (the highest is the HETS and the lowest is
the MARI) of the catalytic cycle. Thus, according to this
approximate treatment, the energetic span factor determines the
frequency of the catalytic cycle, namelythe turnoVer frequency,
TOF (cycles per time and catalyst concentration), of the cycle.
Thus, even a simplified treatment shows that the efficiency of
the cycle is determined by more than just the rate-determining
step, and generally, an efficient cycle requires a relatively flat
energy landscape.

As shall be seen later, there are other essential requirements
for a large TOF. Thus, theδE quantity is a suitable measure of
TOF only when the energetic span is much larger than the
reaction energy of the cycle,∆G (the energy difference between
the starting and ending points of one turnover). But whereas
∆G is independent of the catalyst, the energies of the intermedi-
ates and transition states are all catalyst-dependent, and this is
the key for any kinetic influence of all these species on the
more precise expression of the TOF of the cycle, as presented
in this paper, which connects the TOF to the energy landscape
computed by QM methods.

Theoretical and Computational Methods

The kinetic features of a simple cyclic reaction at steady state can
be calculated following the treatments of Christiansen5,13 and Camp-
bell14,15 with some modifications associated with the goal to link the
kinetic model to QM results. Christiansen provided an exact method
to calculate the TOF of anN-step catalytic cycle as in Scheme 1, while
Campbell’s degree of rate control allows us to probe the effect of any
step on the kinetics of the cycle.

Calculation of the TOF. For a catalytic cycle (Scheme 1) at a
steady-state regime,5,13,16all the changes in the concentration with time
are zero, and therefore, the rates of all the processes must be the same
and equal to the global rater in eq 4:

This set of linear equations can be written in a matrix form, which
for a cycle with four species is the following:

Here,ri is an individual rate constant scaled by the global rate, i.e.,ri

) ki/r. As shown by Christiansen,5,13 the TOF (number of cycles per

(5) Boudart, M.Kinetics of Chemical Processes; Prentice-Hall Inc.: Englewood
Cliffs, NJ, 1968; pp 67-71.

(6) Lin, B.; Liu, L.; Fu, Y.; Luo, Sh.; Chen, Q.; Guo, Q.Organometallics
2004, 23, 2114-2123.

(7) Bligaard, T.; Nørskov, J. K.; Dahl, S.; Matthiesen, J.; Christensen, C. H.;
Sehested, J.J. Catal.2004, 224, 206-217.

(8) Jacobsen, C.; Dahl, S.; Clausen, B. S.; Bahn, S.; Logadottir, A.; Nørskov,
J. K. J. Am. Chem. Soc. 2001, 123, 8404-8405.

(9) Mayer, J. M.Acc. Chem. Res.1998, 31, 441.
(10) Amatore, C.; Jutand, A.J. Organomet. Chem.1999, 576, 254-278.

(11) Stolze, P.Prog. Surf. Sci. 2000, 65, 65-150.
(12) Boudart, M.; Dje´ga-Mariadassou, G.J. Catal.2003, 216, 89-97.
(13) Christiansen, J. A.AdV. Catal. 1953, 5, 311.
(14) Campbell, C. T.Top. Catal.1994, 1, 353.
(15) Campbell, C. T.J. Catal. 2001, 204, 520-524.
(16) Experimentally, the induction time to reach a steady state may vary

substantially for each reaction. In the case of Pd cycles, it can be on the
order of an hour at 60°C after∼25 turnovers. This is dependent, e.g., on
the time required to reach the right catalyst starting point from the
precatalysts, plus the time required for stabilization of the concentration
of all the catalyst species. Kinetic measurements will result in erroneous
deduction of rate expressions and mechanisms if the induction time is not
reached (Buchwald, S. L.J. Am. Chem. Soc.2002, 124, 14104-14114).

Figure 1. Schematic representation of a catalytic cycle. A simplified
analysis shows that the factor that determines the efficiency of the cycle is
the energy span,δE, rather than the activation energy,Eaj, of the rate-
determining step.

r ≈ [Cj]kj ) [Cj]A e-Eaj/RT (1)

[Cj] ≈ [Ct] e-∆Ej/RT (2)

TOF ) r
[Ct]

≈ A e-(Eaj + ∆Ej)/RT ) A e-δE/RT (3)

r ) k1C0 - k-1C1 ) k2C1 - k-2C2 ) ... ) kNCN-1 - k-NCN (4)

( r1 -r-1 0 0
0 r2 -r-2 0
0 0 r3 -r-3

-r-4 0 0 r4
)([C1]

[C2]
[C3]
[C4]

) ) (1
1
1
1
) (5)
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time unit and catalyst concentration) can be expressed as in eq 6a:

where∆ is the difference between the products of the forward rate
constants and the reverse ones, defined in eq 6b.

The quantityM is the sum of all the elements of the matrixM̂, eqs
6c and 6d; the first element is the product of rate constants fromk2 to
kN and others are generated by the permutations of one of theki’s per
matrix element:

For instance, for a cycle with four steps:

Conversion of Rate Constant to Energy Levels.While rate
constants (k’s) are the lingua franca of experimentalists, in QM
calculations all states are described in terms of their relative energies
in a reaction profile that is located during the computational procedure.
A connection between energies and rate constants is given by the Eyring
expression:

Here,G(Ii-1) is the free energy level of the intermediate preceding the
transition state; the latter state energy isG(Ti) (see Figure 2). For
convenience, we can use the energies inkbT units and employ the
respective symbolsIi andTi to denote dimensionless energies for the
intermediates (Ii ) G(Ii)/kbT) and the transition states (Ti ) G(Ti)/kbT)
at a specific temperature (for example, 1 kcal‚mol-1/RT ) 1.7
dimensionless energy units at 298 K). In a similar fashion, we define

thek’s in kBT/h units (ki ) k ′ih/kBT) to obtain the following expressions
for the rate constants:

Degree of Rate Control (Xrc,i). The influence of a certain step on
the rate of the reaction is a key question for any catalytic cycle. This
influence can be quantified on the basis of Campbell’s treatment, which
defined the degree of rate control14,15 as follows:

Here,Xrc,i is the normalized variation of the global rate (r) of the cycle
as a function of a change in an individual rate constantki; all other
rate and equilibrium constants remain unaffected. A situation defined
by Xrc,i ) 1 would mean that the global reaction rate totally depends
on stepi, while Xrc,i ) 0 would mean that a change of the rate constant
of stepi will not affect at all the observed kinetics of the cycle.

Using the symbols in eq 9. the degree of rate control becomes

whereXrc,i is expressed in terms of the state energies (denoted asIm

andTn).
Degree of TOF Control (XTOF,i). On the basis of eq 11, we can

define thedegree of TOF controlof a given state as follows:

where Ei is a dimensionless energy of a transition state (Ti) or an
intermediate (Ii). Since these two types of states influence the TOF in
opposite directions, eq 12 uses an absolute magnitude sign, intended
to unify the scale of TOF control values. The only states that are
excluded from this equation are the reactants and products in the
reaction profile, since their energies, as such, are not associated with
the catalysis and the catalyst.

Calculation of XTOF,i for a Catalytic Cycle. From eq 12, and eq 6
for TOF, the degree of TOF control for a certain transition statei, with
energyTi, will be given by eq 13.

To get an expression for the first term in eq 13, we can write∆ as a
function of the state energies as follows:

This leads to the following result for the first term in eq 13:

For the second term in eq 13, we recall thatM is the sum of the
elements of the corresponding matrixM̂ (see eq 6c). We may therefore
write

Figure 2. A single turnover in a catalytic cycle, with indications of the
various energy quantities, and the energy changes of two species that affect
the degree of TOF control.

TOF ) ∆
M

(6a)

∆ ) k1k2 ... kN - k-1k-2 ... k-N (6b)

M ) ∑
a,b

Ma,b (6c)

∆ ) k1k2k3k4 - k-1k-2k-3k-4 (7a)

M̂ ) (k2k3k4 k-1k3k4 k-1k-2k4 k-1k-2k-3

k3k4k1 k-2k4k1 k-2k-3k1 k-2k-3k-4

k4k1k2 k-3k1k2 k-3k-4k2 k-3k-4k-1

k1k2k3 k-4k2k3 k-4k-1k3 k-4k-1k-2
) (7b)

k ′i )
kBT

h
e-∆Gi

q/kbT )
kBT

h
e[G(Ii-1)-G(Ti)]/kbT

k ′-i )
kBT

h
e-∆G-i

q /kbT )
kBT

h
e[G(Ii)-G(Ti)]/kbT

(8)

ki ) eIi-1-Ti

k-i ) eIi-Ti

(9)

Xrc,i )
ki

r
∂r
∂ki

) ∂ ln r
∂ ln ki

(10)

Xrc,i ) ∂ ln r
∂ ln ki|Km,kn*i,-i

) - 1
r

∂r
∂Ti|Im,Tn*i

(11)

XTOF,i ) | 1
TOF

∂TOF
∂Ei | (12)

XTOF,Ti
) | 1

TOF
∂TOF
∂Ti

| ) |M∆(∂∆
∂Ti

1
M

+ ∆
∂(1/M)

∂Ti
)| )

|1
∆

∂∆
∂Ti

+ M
∂(1/M)

∂Ti
| (13)

∆ ) k1k2 ‚‚‚ -k-1k-2 ‚‚‚ ) eI0-T1 eI1-T2 ‚‚‚ -eI1-T1 eI2-T2 ‚‚‚ (14a)

∂∆
∂Ti

) -eI0-T1 eI1-T2 ‚‚‚ + eI1-T1 eI2-T2 ‚‚‚ ) -∆ (14b)

1
∆

∂∆
∂Ti

) -1 (15)
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where theMab terms are the elements of the matrixM̂. Each of the
derivatives under the summation symbol in eq 16 will be zero if thei
state is not included, or-Mab if Mab is a function ofTi. For instance,
for a three-step cycle, the first element of theM̂ matrix is

and therefore we have

Let us label byMTi the sum of all elements that excludeTi in the
matrix M̂; for example, for a two-step cycle we shall have

Using this definition, we obtain the following general relation:

These transformations lead to the final expression, shown in eq 19:

Since the sum of allMTi terms is equal toM (each element excludes
from M̂ only oneTi, in such a way that the sum of those terms that
form MTi finally leads to the complete sum of all the elements), we get
the following closure relationship for the TOF control quantities in the
cycle:17

As a consequence of this relationship,if the energy of the transition
state in the rate-determining step of the cycle is lowered, the
corresponding step will haVe a smaller XTOF,Ti Value, thus making all
the other steps more releVant, acquiring larger TOF controls.

The values ofMTi can, in turn, be written as follows:

whereTj are the corresponding transition-state energies,PBI is a vector
with elements

(N is the number of steps in the cycle), andGB i is a vector extracted
from the ith row of the correction matrixĜ(∆G > 0):

This matrix shows that the transition states that are closer to the final
stage (higheri index) have a higherXTOF,Ti than would be expected
solely from the energy levelTi. This is so because, for a transition
state which is placed later in the sequence of the catalytic cycle, there
corresponds a vectorGBi with more coefficients e∆G which act to upgrade
the corresponding TOF control quantity.

M is calculated as the sum of theMTi (from eq 21),

whereTB is a vector with elements exp(T1), ..., exp(TN). Now it can be
shown that, when derivingXTOF,Ti as a function of the state energies,
we obtain the following quadratic form:

As such, the influence (XTOF,Ti, eq 23) of the transition state that
undergoes stabilization will be lowered following an S-shaped curve
(see Figure 5 later). At the same time, the other degrees of TOF control
for transition statesj (eq 24) will attain a mirror-image shape.

The calculation of the degree of TOF control of the intermediates
(XTOF,Ii ) MIi/M) behaves in a symmetric fashion as follows:

Thus, the correction matrixĜ′ scales the different steps in an inverse
fashion to the matrixĜ in eq 21c, making the “early” intermediates
(with smalleri index) more relevant than the others. In this notation,
IN is the product state andI0 (that is not included explicitly inMI) is

(17) This was presumed by Campbell.14,15 Other examples of this relation for
different systems can be found in the following: Corthright, R. D.; Dumesic,
J. A.AdV. Catal. 2001, 46, 161-263. Baran˜ski, A. Solid State Ionics1999,
117, 123-128.

M
∂(1/M)

∂Ti

) -
1
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∑
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e-T1+I0 e-T2+I2 )
MT1

) M1,1 + M2,2 ) e-T2+I1 + e-T2+I2 (17c)
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the reactant state. The same closure relation that links the degrees of
TOF control for the various transition states applies to the sum ofXTOF,Ii

quantities for the intermediates in the cycle, for which the sum is
normalized to 1.

Calculation of TOF for a Catalytic CyclesThe Corrected
Energetic Span. Having M (eq 22), we just need to derive∆ as
follows:

whereĜ is the correction matrix (eq 21c),IB is the vector (exp(-IN), ...,
exp(-I1)), and the vectorTB is (exp(T1), ..., exp(TN)). Equation 27, a
direct consequence of Christiansen’s treatment,13 forms the basis for
the algorithm used here to calculate efficiencies of catalytic cycles.
From this expression we can see that the influence of the TOF of a
given transition state increases as the transition state’s energy increases
and as it lies closer to the product phase in the sequence of the cycle.
For the intermediates, the impact on the rate grows as their energy is
lowered and as the intermediate is more proximal to the reactants.

Derivation of the Corrected Energetic Span.To have a quicker
but still accurate estimate of the TOF andXTOF,I, we can usethe
corrected energetic span(δE ′). Mathematically, to calculateδE ′ we
have to neglect all terms but one in the denominator of the expression
in eq 27 for the TOF calculation. This is usually a good approximation,
considering that a difference of only 3 kcal/mol in two exponential
terms creates a difference of 99% in their relative importance. In the
numerator of eq 27, we may neglect the 1, since e∆G . 1. We finally
obtain the following:18

The above difference between the two expressions of the energetic span
depends on the relative positions of the transition state and the
intermediate.18 For example, consider a two-step cycle characterized
by the following matrices:

The TOF will be

Usually only the term with highest exponential value in eq 30, the one
that maximizesδE, cannot be neglected. Therefore, we have eq 31,
which approximates eq 30:

In a case when two terms in eq 30 become relevant, for example
with two transition states having highXTOF,Ti (as it appears later in this
paper for the Pd cross-coupling reaction), the resultant TOF will be

whereb is the difference of both exponential terms:

and the energetic span is the bigger of the two terms. The factor [1+
exp(-b)]-1 is smaller than 1 and will lower the TOF of the cycle. For
instance, if both exponential terms are equal (see an example in the
Applications section later), then the TOF becomes simply exp(δE ′)/2,
and as such, the TOF of the cycle will be halved. Thus, for a given
δE ′, the TOF will be lowered with the increase of the number of
combinations between intermediates and transition states having similar
status in the cycle (eq 30).

From the definition in eq 12 and eq 32, we then find that, when two
transition states have comparable importance in a cycle, the degree of
TOF control will be

A SummarysHow To Calculate the TOF. Once the full cycle is
calculated by a QM method, one defines all theki’s and equilibrium
constant in energetic terms as defined above (eq 9). Strictly speaking,
free energies are required. However, when these are not available (or
are inaccurately determined by the QM method), one may cautiously
use energies or energies with ZPE corrections to obtain some insight
into the cycle. For accurate results, the TOF must be calculated from
eq 27 andXTOF,Ti from eq 19. However, in most cases (and in the cases
studied later in this work) eq 27 can be rigorously replaced by the
simpler expression in eq 34, when two combinations of intermediates
and transition states are dominant, as appears on the exponential terms
of eq 30. Alternatively, eq 31 may be applied for those cases where
only one transition state and one intermediate are influential:

where

Thus, as a rule of thumb, it is possible to reason about the TOF of
a cycle by just measuring (calculating) the energy span between the
MARI and the highest transition state if the latter appears in the cycle
after the intermediate, or by subtracting from the same energy span
the value of∆G (∆G defined always as a positive quantity) whenever
the highest transition state appears before the intermediate (eq 34b,
Figure 3).

QM Methods. The kinetic scheme is applied here to a few cycles
computed previously by QM methods.

The cross-coupling reaction of an aryl halide with neutral and anionic
Pd0 catalyst was studied previously2 using the B3LYP functional and
the LACVP*+ basis set implemented in Jaguar 4.2.19 All geometries
were optimized with Jaguar 4.2, while the ZPE corrections were
determined from Gaussian 98.20 In the present study, we added to the
various species free energy terms and single-point solvation energies.
In the case of the cross-coupling of carboxylic anhydrides with

(18) The distinction in eq 28 is a consequence of the e∆G terms in the correction
matrix (and is also consistent with a change of the starting point to other
intermediates).

(19) Jaguar 4.2; Schrödinger, Inc.: Portland, OR, 1991-2000.
(20) Frisch, M. J.; et al.Gaussian 98, Revision A.11.2; Gaussian, Inc.:

Pittsburgh, PA, 2001.

∆ ) e-Σi)1
N Ti eΣi)1

N Ii(e∆G - 1) (26)

TOF ) ∆
M

) e∆G - 1
(Ĝ‚ IB)‚TB

(27)

δE ′ ) {Tk - Ij if k > j
Tk - Ij - ∆G if k e j

∆G > 0 (by defn) (28)

Ĝ ) (1 1
1 e∆G) (29a)

IB ) (e-I2, e-I1) (29b)

TB ) (eT1, eT2) (29c)

TOF ) e∆G - 1
(Ĝ‚ IB)‚TB

) e∆G - 1

e-I2+T1 + e-I1+T1 + e-I2+T2 + e-I1+T2+∆G

≈ e∆G

e-I2+T1 + e-I1+T1 + e-I2+T2 + e-I1+T2+∆G

) (e-I2+T1-∆G + e-I1+T1-∆G + e-I2+T2-∆G + e-I1+T2)-1

(30)

TOF≈ e-(-Ij+Tk{-∆G}) ) e-δE ′ (31)

TOF≈ (e-Ij+Tk{-∆G} + e-Im+Tn{-∆G})-1

) 1

1 + e-b
e-(-Ij+Tk{-∆G}) ) 1

1 + e-b
eδE ′

(32a)

b ) (Ij - Tk{+∆G}) - (Im - Tn{+∆G}) (32b)

XTOF,Ti
) 1

1 + e-b
(33)

TOF ) 1

1 + e-b
eδE ′ (34a)

δE ′ ) {Tk - Ij if k > j
Tk - Ij - ∆G if k ej

(34b)
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arylboronic acid,3 the authors used the BP86 DFT functional with the
6-31G* basis set for all atoms except for Pd, which was described by
the LANL2DZ basis set, implemented in Gaussian 98. The calculation
of the Heck reaction with Ni and Pd6 was carried out using B3LYP
with the LANL2DZ//LANL2DZ(p) basis set (consisting of the LANL2DZ
basis set with an extra d polarization function for P, Cl, Br, and I, an
f function for Ni and Pd, and D95v(d) for H, C, and O).

Applications

Having established the connection between QM calculations
and a basic kinetic model, we shall now use it to interrogate a
few catalytic cycles that were computed by QM methods and
published recently in the literature.2,3,6An additional application
is to a longstanding effect in heterogeneous catalysis. The basic
expressions that are needed for these applications are eqs 31-
34. Already at the outset, we have to emphasize that reliable
TOF values can be obtainedonly from accurate calculations of
free energies in a solVent. However, accurate free energy
calculations in a solvent are not commonly available, and
therefore, in such cases, the efficiency of the computed cycle
may be calculated using the energy scale employed in the
calculations. Moreover, even when free energies are available,
it is still instructive to obtain an analysis of the effects of the
various energy components to the TOF, as is done in the first
example below. As such, the following applications serve the
purpose of projecting the insight of the model for the practicing
computational chemist.

Cross-Coupling of an Aryl Halide with Neutral and
Anionic Pd0 Catalyst. The cross-coupling reaction21 in eq 35
is catalyzed by divalent Pd0 complexes. In a recent paper,2 we

studied two alternative catalytic cycles based on two different
formulations of the catalyst. These two cycles are shown in
Scheme 2; one involves the neutral PdL2 (L ) PR3) catalyst,
which appears in the consensus mechanism, and the other
involves an anionic PdL2X- catalyst, proposed by Jutand and
Amatore.21 Experimentally, the R substituents of the phosphine
are usually phenyl groups, X- is a halide anion, and Nu- is a
boronic acid, a Grignard reagent, or a hard nuclephile.

The theoretical studies first established the existence of the
anionic catalyst species for a variety of anions and phospine
ligands (with PH3, PPh3, and PV3; V ) vinyl).2,3,22,23The anionic
complex was shown to be a genuine minimum also in solution,
using a continuum THF as solvent, and with a discrete cluster

of 7-10 THF molecules.22 Similar tests that were carried out
on other species in the cycle24 showed that anionic additive
remains as part of the structure also in a solvent. In addition,
the role of the anionic catalyst for X- ) acetate, in the reaction
with Ph-I, was discussed by Goossen et al.3,23 for gas-phase
and solution-phase conditions. The full catalytic cycles for the
two mechanisms in Scheme 22 were computed using PH3 as
ligand models, Ph-Cl as reactant, and SH- as nucleophile.
These cycles were compared also with the characteristic cycles
produced by neutral chelated catalysts Pd(PH2(CH2)nPH2) (n
) 3, 6).2 It was argued that the anionic catalyst is superior to
the neutral and bidentate catalysts, since the anionic additive
lowers the energy of the HETS in the oxidative addition step
and raises the energy of the MARI. However, this argument
was based onthe uncorrected energy spanof the cycle (eq 3),
which, as we argued above, may not always be an accurate-
measure of the TOF. Here, we apply the model discussed above.

The cycle energy profiles obtained in this study are repre-
sented in Figure 4, which is adapted from the original work in
ref 2, where zero-point energy (ZPE) corrections were used.
Table 1 collects the necessary data to apply the equations for

(21) (a) Amatore, C.; Jutand, A.; Medeiros, M. J.; Mottier, L.J. Electroanal.
Chem.1997, 422, 125-132. (b) Amatore, C.; Azzabi, M.; Jutand, A.J.
Am. Chem. Soc.1991, 113, 8375-8384. (c) Amatore, C.; Jutand, A.; Suarez,
A. J. Am. Chem. Soc.1993, 115, 9531-9541. (d) Amatore, C.; Jutand, A.
J. Organomet. Chem.1999, 576, 254-278. (d) Amatore, C.; Jutand, A.
Acc. Chem. Res.2000, 33, 314-321.

(22) Kozuch, S.; Shaik, S.; Jutand, A.; Amatore, C.Chem. Eur. J.2004, 10,
3072-3080.

(23) Goossen, L. J.; Koley, D.; Hermann, H. L.; Thiel, W.Organometallics
2005, 24, 2398-2410.

(24) Similar tests for the HETS of the anionic cycle (TSH,Cl
Ox in Figure 4) showed

that the Cl- anion remains nestled at the back of the phosphine ligand.2

The survival of the MARI (in Figure 4) with a continuum THF model was
also tested, and the MARI was found to be a genuine minimum, with some
elongation of the average distance between the Cl- and the phosphines
(from 2.360 to 2.556 Å).

Figure 3. Corrected energetic span (δE ′) for calculating TOF when the
transition state with highestXTOF,T (Tk, the HETS) (a) comes before the
intermediate with highestXTOF,I (Ij, the MARI) and (b) comes after this
intermediate.

Ar-X + Nu- f Ar-Nu + X- (35)

Scheme 2 . Neutral (“Consensus”) and Anionic Mechanisms for
Cross-Couplinga

a The anionic mechanism follows ref 2.
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TOF and TOF control in the various putative cycles. The
energies (corrected by ZPE) are expressed here in dimensionless
units at 298 K. In the present treatment, we consider also the
conclusions based on free energies and solvation corrections.
Thus, this example may illustrate the capability of the model
to discern alternative hypotheses and to pinpoint deficiencies
in a given computed cycle.

Catalytic Cycle of the Neutral Catalyst with Monodentate
Phosphine Ligands.The neutral mechanism (Figure 4a) involves
concerted oxidative addition and reductive elimination. After
oxidative addition of Ph-Cl, the intermediateII undergoes two
consecutive steps of ligand substitution: the first involves
displacement of the PH3 ligand with the incoming nucleophile,
HS-, leading toII L, and subsequently, upon re-entering of the
phosphine ligand, the Cl- is displaced. The so-generated
complex, II ′Cl in Figure 4a, is the MARI.24 From a kinetic
viewpoint, we take this “consensus” cycle as standard and assign
it, in Table 1, a reference value of TOF) 1; the other cycles
were estimated relative to this standard.

Using the data in Table 1, the resulting degree of TOF control
for the MARI of the neutral cycle (speciesII ′ in Figure 4) is 1,
as expected from the low energy of this intermediate species.
As shown in Figure 5, artificial elevation of the energy value
of this MARI will cause an exponential growth of the TOF up
to the point where other intermediates in the cycle start to
become relevant as TOF controllers. In parallel, as the MARI
energy grows, the reaction rate reaches a plateau as a conse-

quence of the decreased influence of this intermediate compared
to the other ones. TheXTOF,i profile for this stage is S-shaped
like a titration profile, as described above in eqs 23 and 24.

Let us turn to consider the influence of the transition states
in the cycle of the neutral catalyst in Figure 4a. Two states have
considerable influence: the oxidative addition (TSH

Ox) and the
reductive elimination (TSHS

Red), which have energetic spans that
differ by b ) 0.6 (from eq 33,XTOF,T ) 0.65 and 0.35,
respectively). If it is chemically possible to lower only one of
these two transition states, this will bring no great improvement
of the cycle kinetics, as the unmodified step will eclipse the
putative enhancement due to the lowering of the other transition
state. Since the two steps have similar relationships to the MARI
(see eq 32), the TOF approximation based on the corrected
energetic span will be given by eq 36,

where it is scaled by a factor of 0.65.
Catalytic Cycles of the Catalysts with Bidentate Phosphine

Ligands. When the ligands of the catalysts are bidentate
phosphines, R2P-(CH2)n-PR2, the smaller (CH2)n linkers apply
a uniform stabilization on the whole reaction profile energies
in the catalytic cycle (see Figure 4b). For the linker withn )
6, the oxidative addition complex and the MARI have virtually
the same energy levels as the corresponding species in the cycle
of the neutral monodentate phospine-ligated complex (Figure
4a). It is therefore not surprising that the calculated relative TOF
for n ) 6 in Table 1 is 0.4. The degrees of TOF control have
the same values as before; 1 for the MARI, and 0.71 and 0.29
for the oxidative addition and the reductive elimination,
respectively. We note that the differences between TOF) 1 or
0.4 are not significant,unless of course these were based on
extremely accurate solVated free energy data, which is usually
not the case. Thus, the most one can say is that the cycles of
the neutral Pd0(PR3)2 and chelated Pd0[R2P(CH2)nPR2] catalysts
have similar efficiencies, as calculated at the zero-point-corrected
energy level in the gas phase.

The preceding conclusion is surprising in view of the usual
conception that the bidentate-ligated Pd0 complexes constitute
superior catalysts, and the catalytic power improves with the
decrease of the length of the (CH2)n linker. Thus, the effect of
the length of the linker on the oxidative addition has been studied
before.2,25In both studies, it was found that the smaller the chain,
the lower was the oxidative addition barrier, in line with pre-
dictions of the valence bond state correlation diagram model.26

This conclusion, however, concerned only the rate-determining
step of the cycle and did not take into account the energy of
the MARI. Since the smaller the chain length is used, the more
stable becomes the MARI, the two effects (barrier lowering and
MARI stabilization) have opposite influences in the TOF, and
therefore, the bidentate complexes have virtually identical TOFs,
irrespective of the chain length (the relative TOF for the cycles
of the chelated complex withn ) 3 is 0.5 in Table 1).

In summary, the chelated catalysts do not improve the cycle
kinetics. This is a consequence of the fact that the sum of the

(25) Su, M.; Chu, S.Inorg. Chem.1998, 37, 3400-3406.
(26) (a) Shaik S.; Shurki A.Angew. Chem., Int. Ed.1999, 38, 586-625;Angew.

Chem.1999, 111,616-657. (b) Pross A.; Shaik S.Acc. Chem. Res.1983,
16, 363. (c) Shaik, S.; Hiberty, P. C.ReV. Comput. Quantum Chem.2004,
20, 1-100. (d) Shaik, S. S.J. Am. Chem. Soc.1981, 103, 3692-3701.

Figure 4. Full catalytic cycles for (a) anionic (PdL2Cl-) and neutral (PdL2;
L ) PH3) catalysts and (b) neutral catalysts with bidentate ligands (PH2-
(CH2)nPH2) having six and three methylene links (energy values with ZPE
corrections are given, dimensionless, at 298 K). Note that the reactants for
the two cycles are placed together at zero energy, and consequently, the
relative energies of other species are different in the two cycles even when
the species are identical. A schematic anionic mechanism is shown in
Scheme 2. Adapted from ref 2.

TOF≈ 1

1 + e-b
e-(-III ′Cl+TTSHOX-∆G) ) 0.65 e-δE′ (36)
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XTOF for the intermediates is equal to the sum for the transition
states, and therefore the two effects mutually cancel one another.
Note that the TOF of the chelated catalysts is the same as that
of the neutral Pd0(PR3)2 complex, despite the fact that the
oxidatiVe addition step of the latter has a barrier that is 12
kcal/mol higher than the former. Only under conditions of a
single turnover will the energy advantage of the barrier come
into play, as indeed was found experimentally.27

Catalytic Cycles of Anionic Pd0 Complexes in the Gas Phase.
Previously,2 it was argued that the anionic catalyst produces
the main advantage of the chelate complexes without their
drawback. As shown above in Figure 4a, when the reactant
approaches the tricoordinated anionic catalyst, the Pd-Cl- bond
is broken. However, the departing Cl- migrates to the site
between the phosphine ligands (IH,Cl) and is clamped by
Coulomb interactions with the positively charged hydrogen
substituents of the ligands (the same was shown to be the case
for PPh3 ligands). This structural motif continues in the HETS,
TSH,Cl, and was shown to survive in a solvent model.2,24Nestled
in the phosphine cage, the chloride exerts on the phosphines a
chainlike effect that produces a low-energy transition state for
the oxidative addition step.25,26When the nucleophile approaches
the catalyst, it displaces the chloride and assumes its position
in the phosphine cage (speciesII H,Cl to II SH in Figure 4a). The
loss of Coulomb stabilization of the Cl- with the phosphines
results in higher intermediates, relative to the onset of the
cycle,than in the neutral cycle, where no anion is present before
the nucleophile approaches.

For the catalytic cycle that appeared in the original paper
(and is reproduced here in Figure 4a),2 the anionic mechanism
has a TOF of only 2.8 relative to the standard (see Table 1).
This surprisingly small advantage was due to the fact that, in
the treatment of the final stage of the catalytic cycle, we

neglected the effect of the Cl- anion (which was originally part
of the Ph-Cl substrate). Originally,2 without the kinetic model
to guide us, we assumed that once this Cl- anion departed there
were no kinetically important steps. Only here, with the advent
of the kinetic model, could we appreciate that this neglect leads
to an underestimation of the influence of reductive elimination
to the TOF and its degree of TOF control. Recalculation of this
last step, as shown in Figure 6, reveals that the departing Cl-

ion is nestled again in the Coulomb cage near the phosphines,
lowering the barrier for reductive elimination by the above-
discussed chainlike effect.2,25,26This effect is precisely the same
as the one exerted on the oxidative addition by the original Cl-

in the Pd(PH3)2Cl- catalyst. With this step taken into account,
the resulting energetic spans taken from the oxidative addition
and the reductive elimination become almost isoenergetic (b )
0.2 between these two transition states, resulting in TOF) 0.55
exp(δE)). A calculation ofδE ′ in the corrected cycle gives us
45.9, and is therefore 27.4 energy units lower than the span of
the cycle for the neutral catalyst (at 298 K, this is equivalent to
16.4 kcal/mol). The new TOF for the corrected anionic cycle,
given in Table 1, is 6.7× 1011 relative to the standard TOF)
1 for the neutral catalyst! This result seems to support the
experimental data of Jutand and Amatore regarding the impor-
tance of the anionic catalyst for a working cycle.10,21

Comparison of the Catalytic Cycles of Neutral and Anionic
Pd0 Catalysts Using Free Energies and SolVation Corrections.
The above discussion refers to gas-phase energies with ZPE
corrections, and the question that remains is: how would the
incorporation of free energies and solvation corrections affect
this conclusion? The resulting parameters are shown in Table

(27) Portnoy, M.; Ben-Daviv, Y.; Rousso, I.; Milstein, D.Organometallics1994,
13, 3465-3479.

Table 1. Key State Energies (corrected by ZPE, in dimensionless units) at 298 K, Degrees of TOF Control, Reaction Energies (∆G),
Energetic Span Values (δE ′), and Relative TOF Values

monodentate neutral bidentate

neutral anionic
anionic

corrected n ) 3 n ) 6

∆G ) 36.5a E XTOF E XTOF E XTOF E XTOF E XTOF

intermediate II ′Cl -74.9 1.00 -59.5 1.00 -59.5 1.00 -91.0 1.00 -75.6 1.00
transition states TSH

Ox 34.9 0.65 22.9 0.00 22.9 0.55 13.7 0.00 35.3 0.71
TSSH

Red -2.2 0.35 13.2 1.00 -13.8 0.45 -16.6 1.00 -2.1 0.29
δE ′ 73.3 72.7 45.9 74.4 74.4
relative TOFb 1 2.8 6.7× 1011 0.5 0.4

a We use the generic symbol∆G, as in the TOF equations, but actually this is a∆(E + ZPE) value. The quantity refers to the net process, HS- + Ph-Cl
f Ph-SH + Cl-. b These values are relative to the TOF of the neutral catalyst, Pd(PH3)2.

Figure 5. Evolution of the turnover frequency (TOF) and the degree of
TOF control (X) of the neutral mechanism as a function of arbitrary
destabilization of the MARI.

Figure 6. Revised energy profile plot (relative to Figure 4a) for the
reductive elimination in the anionic and neutral cycles.
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2. It is seen that, on the free energy scale, the anionic catalyst
is still the better option, having a relative TOF of 1.2× 106

compared with the neutral cycle. However, adding solvation
energy correction (using a continuum THF model in Jaguar
4.219) to the gas phase+ ZPE correction inverts the order. Now
the TOF of the cycle for the neutral catalyst is much higher
than that of the anionic catalyst. The major effect is the relative
change in the energy of the MARI that becomes deeper in
energy with solvation, thereby raising the energy span of the
anionic cycle; this is the case despite of the energy lowering of
the HETS. This result is in discord with the experimental data
of Jutand and Amatore regarding the importance of the anionic
catalyst for a working cycle.10,21

In light of these new results, the final judgment on the role
of anionic additive10,21will have to be based on more complex
QM or QM/MM calculations of the cycle,including the so far
neglected counterion of the anionic additiVe, and possibly with
accurate free energy quantities. Nevertheless, this application
demonstrates the importance of considering the entire cycle and
not only selected states.

Cross-Coupling of Carboxylic Anhydrides with Arylbo-
ronic Acids. Goossen et al.3 studied the cross-coupling reaction
using two catalyst species, the neutral one, Pd(PMe3)2, and the
anionic species, Pd(PMe3)2OAc-, proposed by Jutand and
Amatore,10,21 with an arylboronic acid as nucleophile. The
reaction mechanism was found to consist of three phases,
oxidative addition, transmetalation, and reductive elimination,
as in the preceding cycle. Scheme 3 shows briefly the two
alternative catalysts. Thus, the transmetalation step made use
of acetate for both catalyst species; for the anionic catalyst, the
acetate was part of the catalyst complex itself, while for the
neutral catalyst the acetate was part of the phenylboronic acid
and acted as a cocatalyst.

Table 3 summarizes the critical parameters and TOFs of the
two cycles. In both mechanisms, the states that maximize the
energetic span are the same. The MARI is the starting point for
the transmetalation (with free energy of-25.5 (dimensionless)
for the anionic cycle,-8.4 for the neutral one at 298 K; in
both cases this is relative to the reactant species). The most
important transition state is the one involving the dissociation
of the Ph-B bond. The resulting energetic span for the anionic

mechanism is 36.8, while for the neutral one it is 36.7 (δE ′ )
T - I). Consequently, both catalytic cycles have virtually the
same TOF.

Comparison of the Heck Reaction with Pd and Ni
Catalysts. Theoretical calculations6 of the Heck reaction
catalyzed by two metal complexes of the divalent palladium(0)
and nickel(0) species revealed the same mechanism for both
catalysts. Since nickel is less electronegative than palladium,
its oxidative addition step has a low-energy transition state
leading to very stable intermediates. The oxidative addition is
more difficult in the case of the palladium catalyst, and hence,
the energy profile exhibits high transition states and intermedi-
ates. The two energy profiles are shown schematically in
Scheme 4, along with indication of the critical states in the
reaction.

At a superficial glance, we cannot favor one of the cycles in
Scheme 4, and this is where the calculation of the corrected
energetic span is handy. Again, for both catalysts the most
influential intermediate is the insertion intermediate. For the
Pd catalyst, the transition state for oxidative addition is the one

Table 2. Energy Parameters (Dimensionless) at 298 K and TOFs for the Catalytic Cycles of the Neutral and Anionic Catalysts, Using
Gas-Phase Energies with ZPE Correction, Gas-Phase Free Energies, and Gas-Phase Energies with ZPE and Polarizable Continuum
Solvation Correction

energya

∆Gb ) 36.5
free energy
∆Gb ) 35.9

energy in solventa
∆Gb ) 41.3

neutral anionic neutral anionic neutral anionic

MARI II ′Cl -74.9 -59.5 -40.5 -33.5 -43.4 -57.0
HETS TSH

Ox 34.9 22.9 53.7 46.2 35.1 31.4
TSSH

Red -2.2 -13.8 19.6 12.7 -2.9 -7.5
δE ′ 73.3 45.9 60.2 46.2 40.6 49.5
relative TOF 1 6.7× 1011 1 1.2× 106 1 1.2× 10-4

a Energy with ZPE correction.b The quantity refers to the net process, HS- + Ph-Cl f Ph-SH + Cl-.

Scheme 3 . Cross-Coupling of Carboxylic Anhydride with
Arylboronic Acid, Studied in Ref 3

Table 3. Key Free Energies (in dimensionless units) at 298 K,
Reaction Energy, Energetic Span, and the TOF Relative to the
Neutral Mechanism

∆G ) 25.8 neutral anionic

intermediate -8.4 -25.5
transition state 28.2 11.4
δE ′ 36.7 36.8
relative TOF 1 0.9

Scheme 4 . Heck Reaction with Ni and Pd Complexes
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with the highest degree of TOF control. The corresponding data
for TOF calculations are given in Table 4.

Using the data in Table 4, with due consideration of the∆G
quantity, the resulting energetic span for the Pd(0) catalyst is
given by

For the Ni(0) catalyst, the reductive elimination transition state
is as important to the kinetics as the one for oxidative addition.
Therefore, we have

and the corresponding TOF is half the exponential of the
energetic span because of the two influential transition states.
Thus, the relative TOF of the two cycles is given then by eq
39:

We emphasize that this difference pertains to the energy data
reported as such in the original literature and not to accurate
free energies in a solvent. With this qualification in mind, we
might say that the result in eq 39 favors the palladium catalyst
over the nickel one.

Sabatier’s Volcano Curve in Heterogeneous Catalysis.The
volcano curve, first discovered by Sabatier for heterogeneous
catalytic systems (for which he received the Nobel Prize in
1912), describes the shape of the TOF function when changing
the transition metal catalyst surface across the periodic table.
Thus, moving from left to right in the periodic table, it was
noted that the change in the transition metal surface led to an
increase of the TOF up to a maximum, after which the TOF
decreased sharply, forming the volcano shape depicted in
Scheme 5.7,8 Another way of looking at Scheme 5 is that the
volcano shape describes the variation of TOF as a function of
the heat of formation of the intermediate compound.5 This
volcano shape of TOF is expected also for homogeneous

systems when small changes are made in the catalyst, e.g., as
the previously described adjustment of the bite angle of a chelate
ligand2,25or small gradual decreases in ligand electronegativity,
etc. In the discussion below, we show the simple physical
mechanism behind the volcano shape of the TOF. In so doing,
we identify also the features that maximize the TOF in a series
of cycles. This is done using the kinetic model developed above
and the well-known Brønsted-Bell-Evans-Polanyi (BEP)
principle.9

Consider the BEP linear relation7,9 for an elementary step,

where∆E is the reaction energy for this elementary step,Ea its
activation energy,â a constant, andR a coefficient between 0
and 1. A generalized BEP relation that considers the transition-
state and the intermediate energies in a cycle will give us the
same linear relationship, which in our energy notations becomes
the following:

wherei and j can be the states with highestXTOF,i (see Figure
7). In this case, a change in the intermediate will also alter the

transition states, and theXTOF,i must display this effect. This is
simply the celebrated Hammond postulate.28

For a catalyst that does not alter the nature of the elementary
steps of the mechanism, what matter are energy changes in the
energy profile. The two quantities that remain invariant for any
catalyst in the series are the starting (I0) and final (IN) ones,
shown in Figure 7. The reactant state,I0, is always set to zero
as a reference, while the product energy depends on the net
reaction and is unaffected by the catalyst. IfTi and Ij are the
states that determine the energetic span (lower profile in Figure
7),then we can write the following expression for the energy
span:

The TOF of the cycle will then be

Since changes in theIj state will induce changes in the other
steps (except for statesI0 andIN), we must consider theXTOF,Ij

based on the BEP relationship. So, fixing the statesI0 and IN,
we get

(28) Hammond, G. S.J. Am. Chem. Soc.1955, 77, 334.

Table 4. Key Free Energies and Energetic Span (Dimensionless)
for the Heck Reaction Catalyzed by Pd(0) and Ni(0) Complexes at
298 K

Ni Pd

∆G ) 15.9 E XTOF E XTOF

intermediate insertion -62.9 1.0 -18.4 1.0
transition state oxid addn 4.7 0.5 44.9 1.0

red elimin -11.2 0.5
δE ′ 51.7 47.4
relative TOFa 1 147

a The TOF values are relative to the nickel mechanism as a standard.

Scheme 5 . An Example of Sabatier’s Volcano Curve for Formic
Acid Decomposition as a Function of Different Metallic Catalystsa

a From ref 5.

δE ′(Pd)) Tox add- I insert. - ∆G ) 47.4 (37)

δE ′(Ni) ) Tox add- I insert. - ∆G ) Tred elim- I insert.) 51.7
(38)

TOFPd

TOFNi
) e-δEPd

0.5 e-δENi
) 147 (39)

Ea ) R ∆E + â (40)

Ti ) RIj + â (41)

Figure 7. Elevation of the reaction profile by a change of a catalyst that
maintains the mechanism of all elementary steps and responds to a BEP
relation.

δE1 ) Ti - Ij ) (RIj + â) - Ij ) Ij(R - 1) + â (42)

TOF1 ) e-δE1 ) eIj(1-R)-â (43)
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As such, a change of a catalyst that raises the intermediate
energy (Ij) and obeys the BEP relation will change the TOF
exponentially, giving rise to the left hillside of the volcano in
Figure 8. If the energy of this MARI continues to grow, at a
certain point the role of the MARI will pass on to the starting
stateI0 (upper curve of Figure 7). At this point, the energetic
span will be given by

However, sinceTi is still linked to Ij by the BEP relationship,
we may re-expressδE2 as follows:

Therefore, we obtain the following expression for TOF,

and for the TOF control,

As shown from eq 44 vs eq 47, the degree of TOF control
changes sign when29 Ij ) I0, and therefore the TOF will exhibit
a maximum at this point (Figure 8) and a fall-down beyond it,
as shown in Figure 8. This will result in a semblance to
Sabatier’s volcano shape. Having a maximum in the TOF
function suggests that the best catalyst in a family of catalysts
that share the same the elementary steps is the one leading to
the lowest transition states while maintaining the initial state
as the MARI of the cycle.

Conclusions

The kinetic model outlined here for catalytic cycles (based
on Christiansen’s treatment13) uses the energy quantities that

are calculated in quantum chemical studies. A recent demonstra-
tion of the utility of coupling kinetic models to QM calculations
is the treatment of polymerization by Michalak and Ziegler.30

The model presented here allows a straightforward assessment
of computed catalytic cycles and testing of alternative hypoth-
eses. The efficiency of a catalytic cycle under steady-state
conditions is determined by an energy span quantity,δE, which
depends on the location of the highest energy transition state
(HETS) and most stable intermediate (MARI) with respect to
reactants and products. If the MARI precedes the HETS,δE is
simply the energy difference between the two species in the
cycle.21 If the HETS appears before the MARI, theδE is
corrected by subtracting the reaction energy∆G. The smaller
the energetic span, the higher the turnoVer frequency of the
cycle(eq 34). The application of this simple idea to the catalytic
cycles of the cross-coupling2,3,21 and Heck6 reactions and to
Sabatier’s volcano7 shows that this model is useful for a critical
assessment of the respective cycles and experimental findings.
Further applications, which include free energies and proper
solvation treatments, will be needed to appreciate its full
potential and predictive ability.
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(29) Note that the sign change is not apparent from eq 12, which uses absolute
magnitudes forXTOF.
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∂Ij
) 1 - R (44)

δE2 ) Ti - I0 (45a)

δE2 ) IjR + â - I0 (45b)

TOF2 ) e-δE2 ) e-IjR-â+I0 (46)

XTOF,Ij
|I0,IN

) -R (47)

Figure 8. TOF andXTOF,Ij for a BEP relation withR ) 0.8. The volcano
shape appears as the lower energy intermediate goes fromIj to I0.
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